

Améliorer le diagnostic des amyloses cardiaques : de la clinique à l'imagerie

Dr A. Zaroui (Mondor)

www.cardioconnect.fr

Améliorer le diagnostic des AC de la clinique à l'imagerie

SESSION : AMYLOSE CARDIAQUE

AUTHEUR: Dr Amira Zaroui

6 ème éclition

Heterogeneous group of misfolded proteins/ various organs /Extensive extracellular

The recent development of effective treatment options

Need for better and earlier detection

largely under-diagnosed

Timely diagnosis of cardiac amyloidosis is challenging

Improve with emergence of newer non-invasive imaging techniques

Gème éclition

HOW ??

- 1 Better knowledge of physiology
- 2 Better Knowledge of the natural history

3To have a detective attitude for sceening Overview of CA and discuss the role of imaging modalities in cardiac amyloidosis 4-Explore future directions for imaging in cardiac amyloidosis.

6 ème éclition

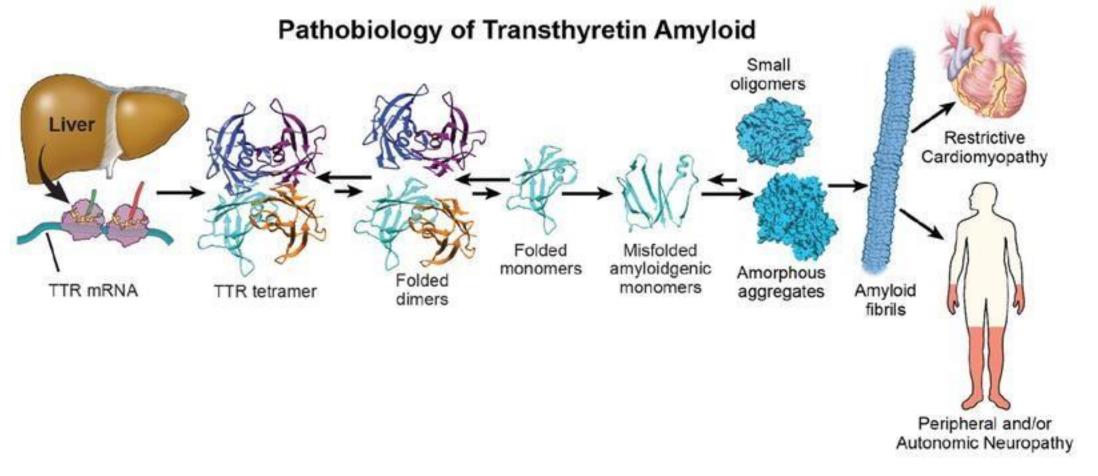
Physiopatholy and natural history


SAMEDI. 2 DECEMBRE 2023 Gène édition

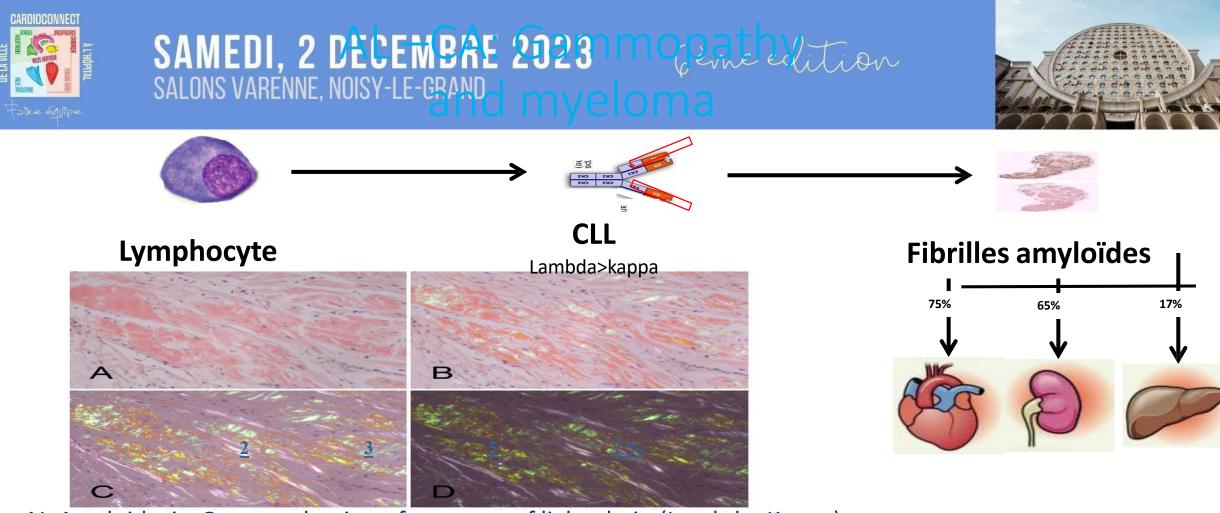
Organs involvement

RÉSEAU AMYLOSE MONDOR CRMR - AMYLOSES CARDIAQUES CHU HENRI MONDOF

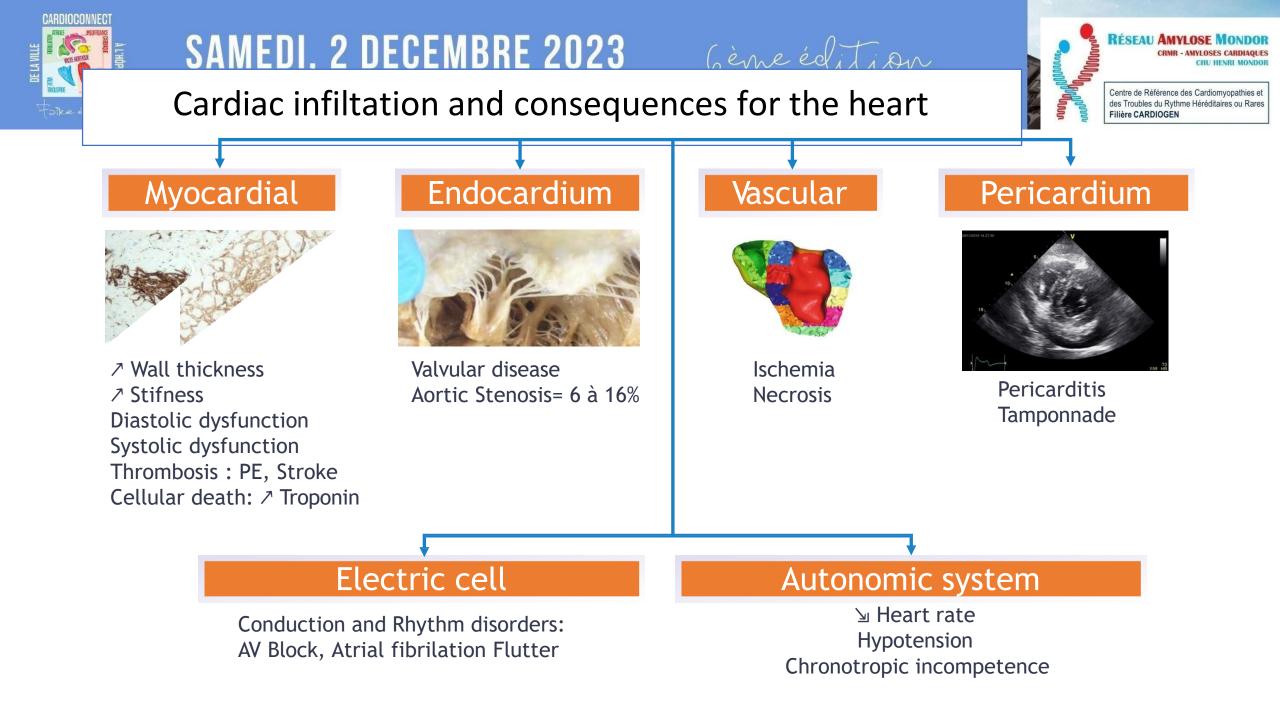
Centre de Référence des Cardiomyopathies et des Troubles du Rythme Héréditaires ou Rares **Filière CARDIOGEN**


Organs consequences...

- ↗ Stifness
- ↗ Increase

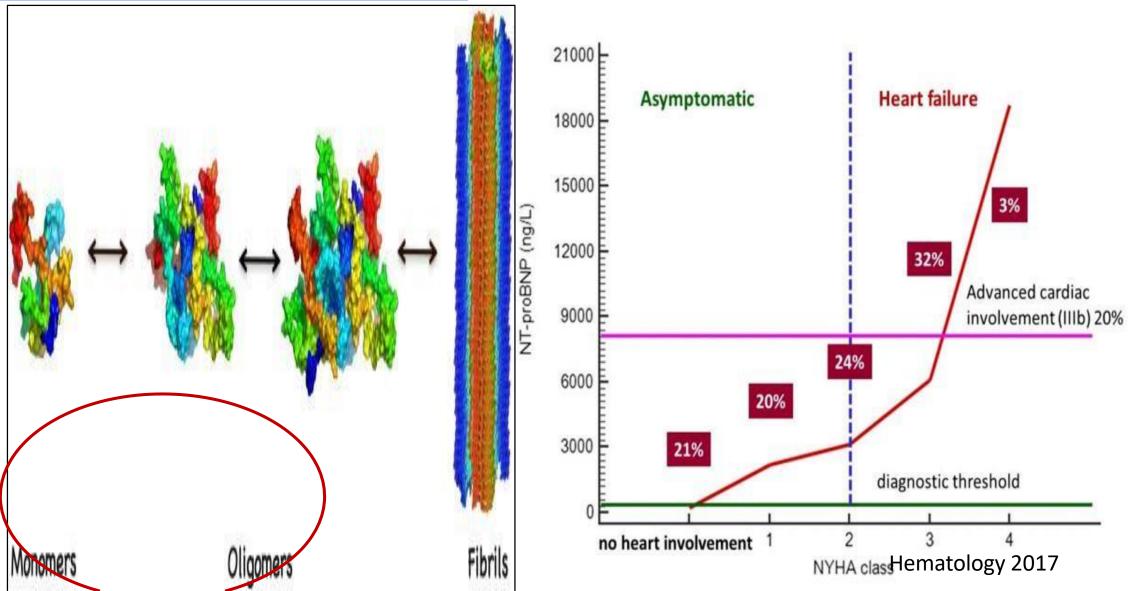


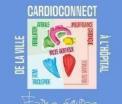
6 ème éclition


Frederick L. Ruberg, et al. J Am Coll Cardiol. 2019 June 11; 73(22): 2872–2891.

•AL-Amyloidosis: Over production of one type of light chain (Lambda>Kappa) by Lymphocytes

•AL-CA with HF symptoms without treatment = DEATH in 6months
•AL-CA = EMERGENCY! ; PROGNOSTIC = MAYO STAGING

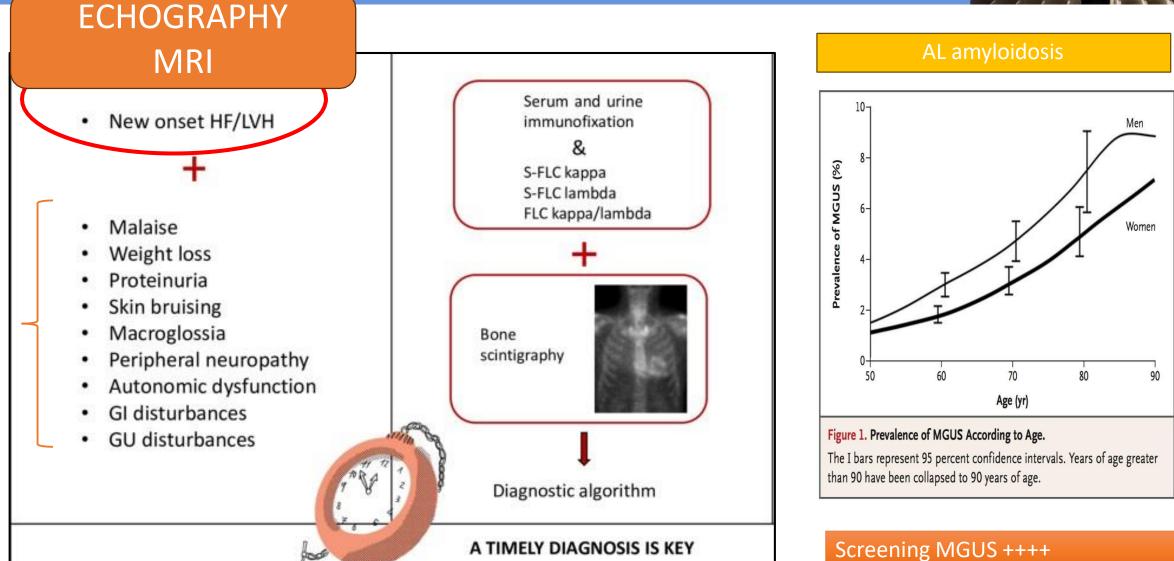

Prevalence of Monoclonal Gammopathy of Undetermined Significance RA. Kyle et al New Engl J Med 2006



SAMEDI. 2 DECEMBRE 2023 Gène édition

Misdiagnosis, too later

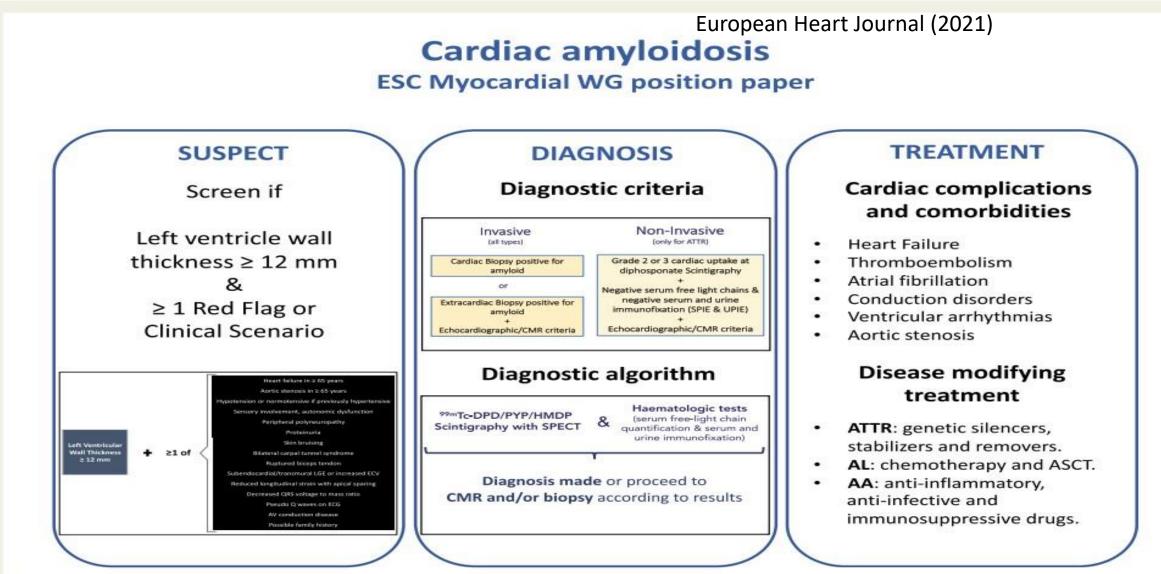
symptoms


specific

Non

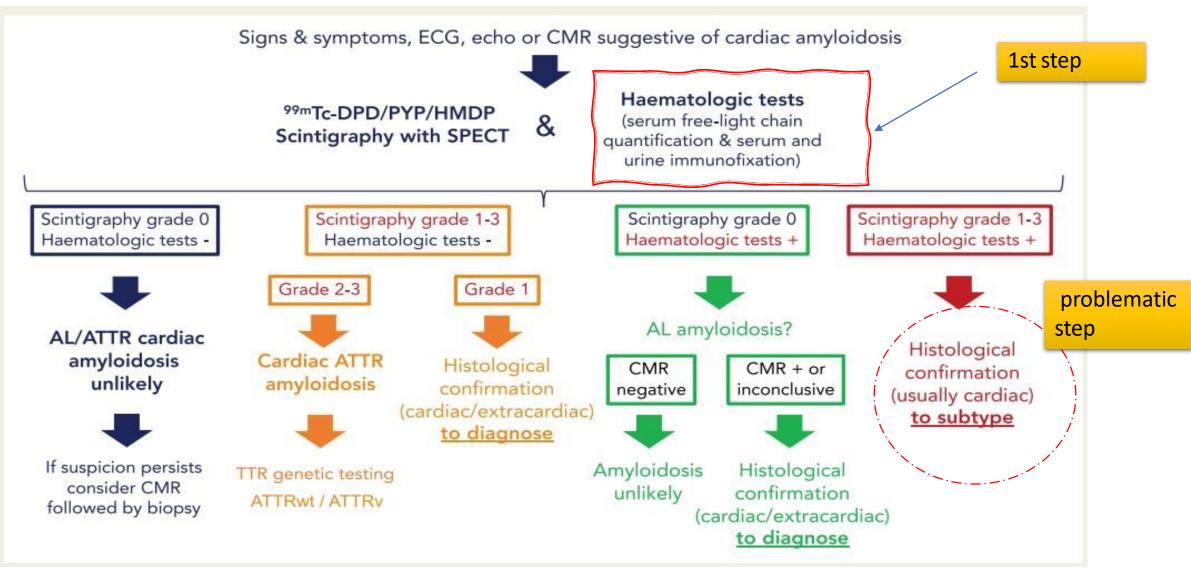
SAMEDI, 2 DECEMBRE 2023 SALONS VARENNE, NOISY-LE-GRAND

6 ène éclition

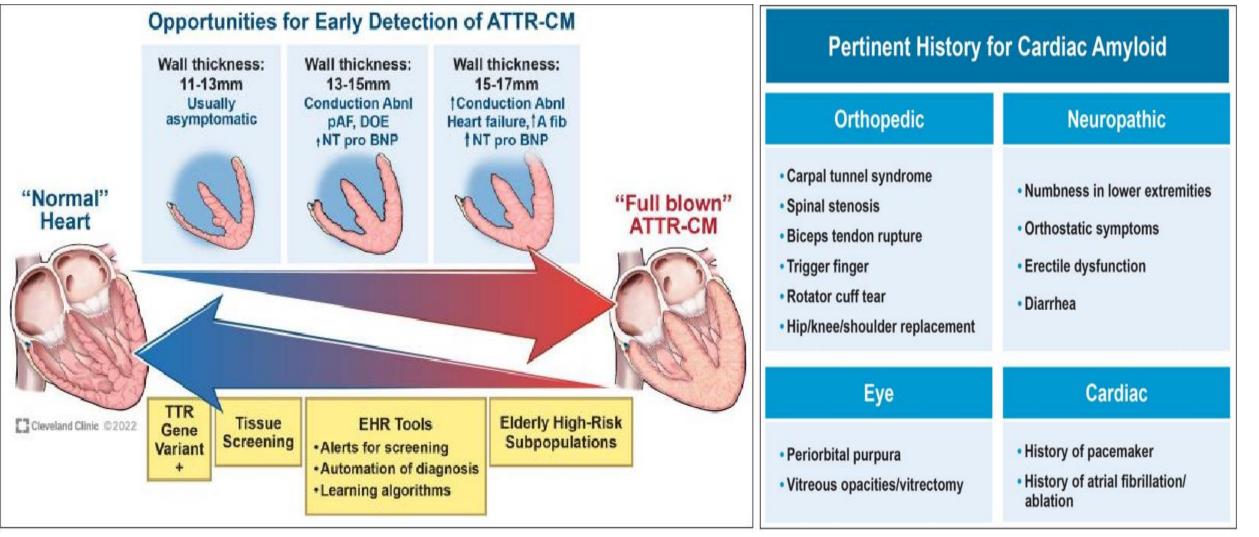


Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases

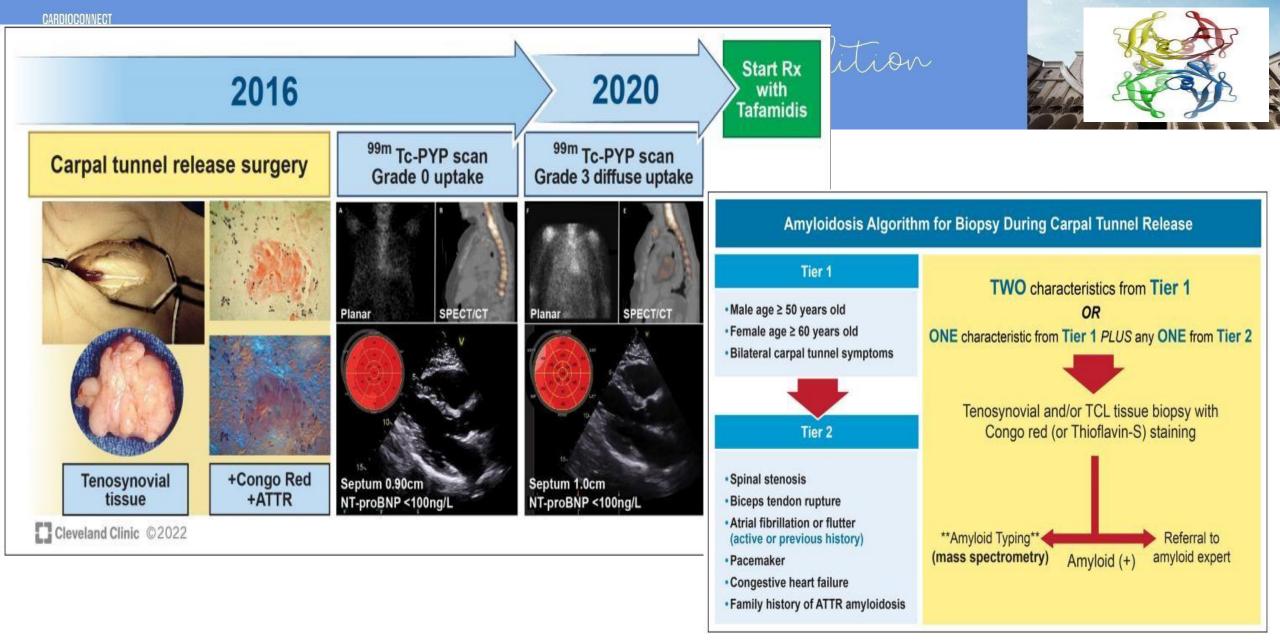
6 ème éclition



6 ème éclition



6 ème éclition


6 ème éclition

Opportunities for Earlier Diagnosis and Treatment of Cardiac Amyloidosis

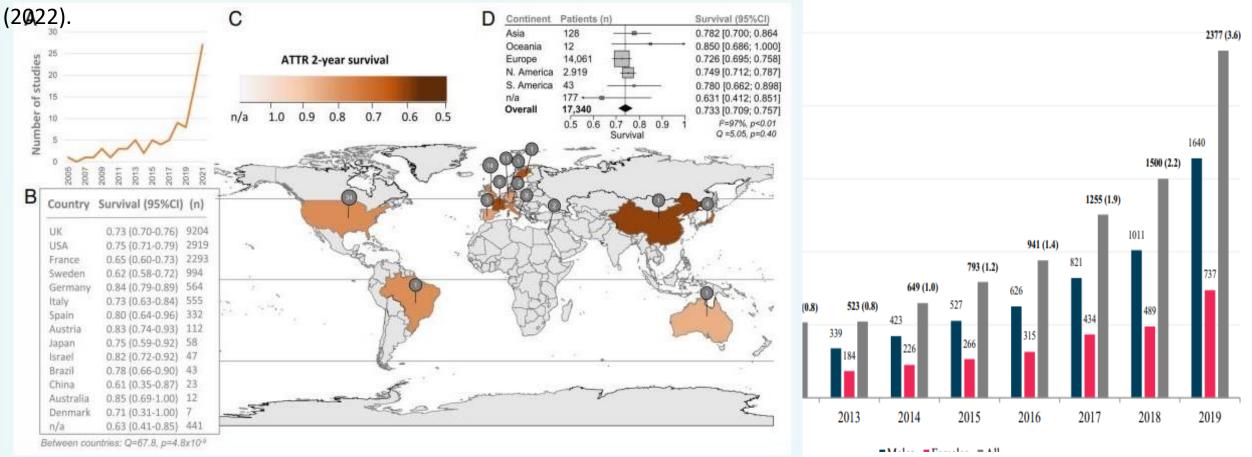
- HFpEF and other cardiac conditions, including atrial fibrillation, arrhythmia and atrioventricular block
- Intolerance to standard heart failure therapies (e.g., angiotensin converting enzyme inhibitors/angiotensin receptor blockers and beta-blockers)
- Discordance of QRS voltage and left ventricular wall thickness seen on echocardiography
- Diagnosis of carpal tunnel syndrome, biceps tendon rupture or lumbar spinal stenosis

- Echocardiography showing increased left ventricular wall thickness and/or low-flow gradient aortic stenosis and additional echocardiography parameters
- Nervous system—autonomic nervous system dysfunction
- including gastrointestinal complaints
- unexplained weight loss

6 ème éclition

On the real life ?

Changes in amyloidosis phenotype over 11 years in a cardiac amyloidosis referral centre cohort in France



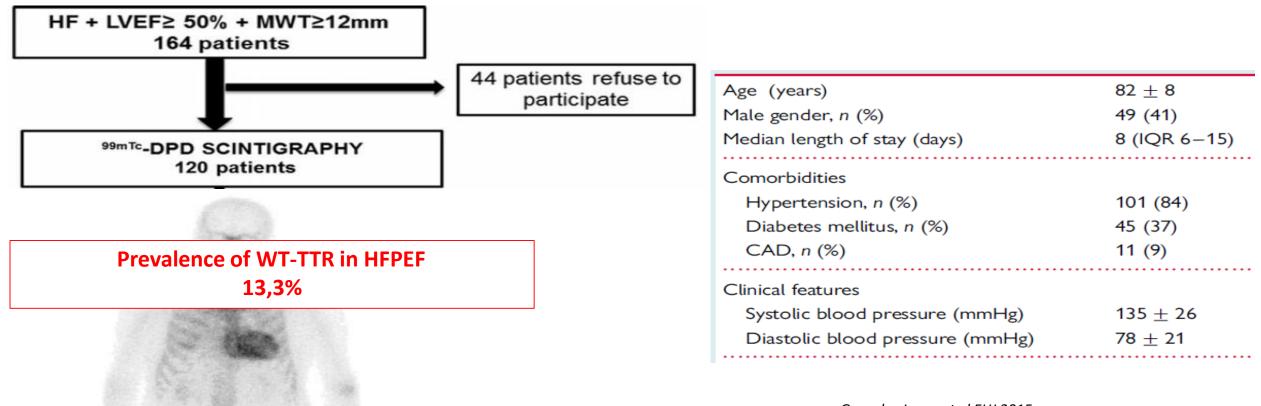
6 ème éclition

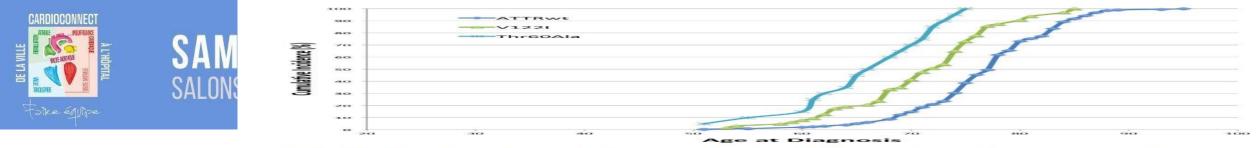
A.S. Antonopoulos et alEuropean Journal of Heart Failure

(A) Annual number of studies on transthyretin amyloidosis (ATTR) over the period 1987–2021. (B) Country-specific studies on the clinical outcome of ATTR; the survival estimates, and 95% confidence intervals (CI) are derived from random-effects meta-analysis. Studies with non subtyped forms of cardiac amyloidosis have been excluded. (C) World map demonstrates the 2-year survival rates of ATTR in the different countries. Bubbles with numbers represent the number of published studies/cohorts for each country. (D) Forest plot for ATTR 2-year survival by continent subgroup.

6 ème éclition

Role of Multimodality cardiac Tools



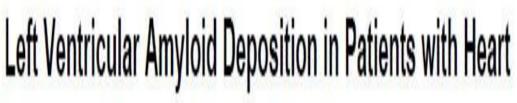

European Heart Journal (2015) **36**, 2585–2594 doi:10.1093/eurheartj/ehv338

Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction

Esther González-López¹, Maria Gallego-Delgado¹, Gonzalo Guzzo-Merello¹, F. Javier de Haro-del Moral², Marta Cobo-Marcos¹, Carolina Robles¹, Belén Bornstein^{3,4,5}, Clara Salas⁶, Enrique Lara-Pezzi⁷, Luis Alonso-Pulpon¹, and Pablo Garcia-Pavia^{1,7}*

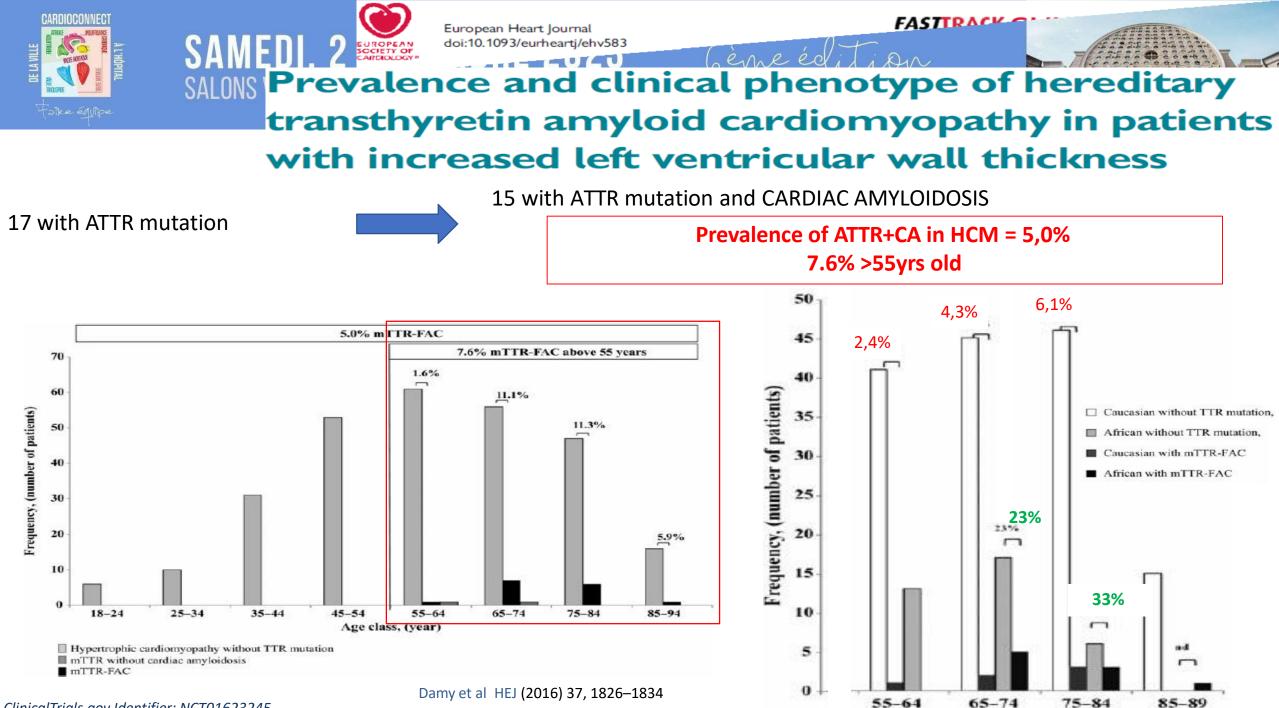
Gonzales-Lopez et al EHJ 2015

FIGURE 1 Age at diagnosis of wild-type transthyretin cardiac amyloidosis (ATTRwt) and hereditary transthyretin cardiac amyloidosis (ATTRh) including both V1221 and Thr60Ala mutations, in a single center cohort (N = 300)


 Autopsy LV specimens : 109 HFPEF without known Amyloidosis; 131 control subjects.

Age (years)	82 ± 8				
Male gender, n (%)	49 (41)		Regression coefficient	SE	p value
Median length of stay (days)	8 (IQR 6–15)	Percent	t Fibrosis (WFDM)		
Comorbidities		Age at death (per 10 yrs)	0.5%	0.3%	0.09
Hypertension, <i>n</i> (%)	101 (84)	HFpEF (vs Control)	2.1%	0.4%	<0.001
Diabetes mellitus, n (%)	45 (37)	wtTTR present (vs absent)	2.0%	0.7%	0.005
CAD, n (%)	11 (9)				
Clinical features		Percent E:	xpected Heart Weight		
Systolic blood pressure (mmHg)	135 <u>+</u> 26	HFpEF (vs Control)	32.2%	2.5%	<0.001
Diastolic blood pressure (mmHg)	78 <u>+</u> 21	wtTTR present (vs absent)	-8.2%	4.0%	0.04

Pilot study for left ventricular imaging phenotype of patients over 65 years old with heart failure and preserved ejection fraction: the high prevalence of amyloid cardiomyopathy


52 patients > 65 year-old with HFpEF

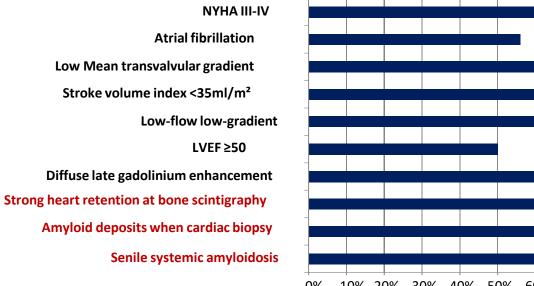
Failure and Preserved Ejection Fraction

a ènzéditon

→ 29% cardiac amyloidosis with 1/3 AL amyloidosis and 2/3 WT-TTR Selma F. Mohammed, MBBS^{*}, Sultan A. Mirzoyev^{*}, William D. Edwards, MD, Ahmet Dogan, MD, PhD, Donna R Grogan, MD, Shannon M Dunlay, MD, Veronique L. Roger, MD, Morie A Gertz, MD, Angela Dispenzieri, MD, Steven R Zeldenrust, MD, PhD, and Margaret M. Redfield, MD

ClinicalTrials.gov Identifier: NCT01623245

SAMEDI 2 DECEMBRE 2023 SALONS VARIENTIL, HOLEY-LE-DRAND CONSTRACT OF CONTINUE


Conditions	Any CA	ATTRwt	ATTRv
HFpEF	13-17%	 17% ATTR deposits (autopsy); 5% moderate to severe deposits; > 80 y 40%, male predominant; < 65 y 0% 	Varying levels of cardiac involvement by different TTR variants
HF	11.4% in Afro-Caribbean patients, UK		8.5% (V122I) in Afro-Caribbean patients, UK
Severe AS for surgical valve replacement	6-12%		
TAVR	8-16%		
Degenerative AS	16%		
Low-flow, low-gradient pattern AS	30%		
HCM			5%, France

Aortic stenosis and transthyretin cardiac amyloidosis: the chicken or the egg?

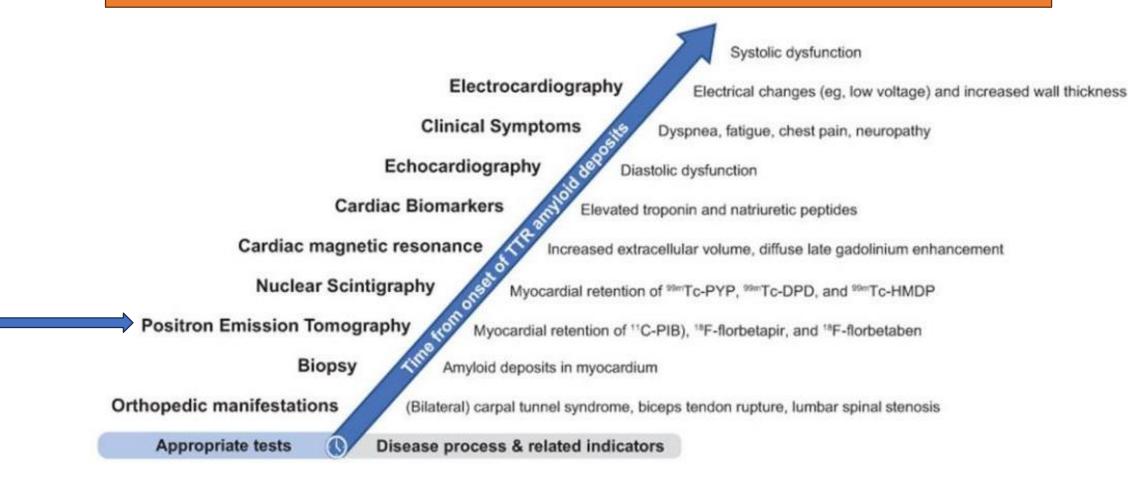
Arnault Galat^{1,2,3,4,5}, Aziz Guellich^{1,2,3,4,5}, Diane Bodez^{1,2,3,4,5}, Michel Slama⁶, Marina Dijos⁷, David Messika Zeitoun⁸, Olivier Milleron⁸, David Attias⁹, Jean-Luc Dubois-Randé^{1,2,3,4,5}, Dania Mohty¹⁰, Etienne Audureau^{1,2,4,5,11,12}, Emmanuel Teiger^{1,2,3,4,5}, Jean Rosso^{1,2,13}, Jean-Luc Monin^{1,2,3,4,5}, and Thibaud Damy^{1,2,3,4,5*}

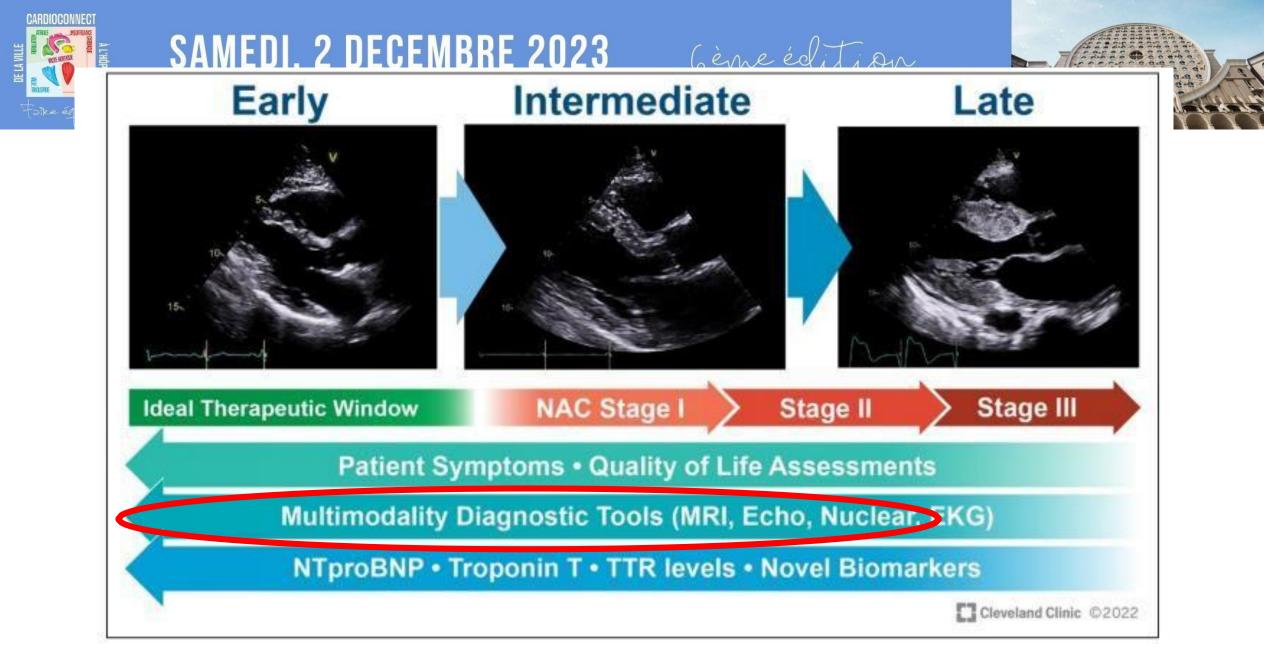
Aims : report cases of patients with both TTR-CA and AS in order to describe their specific phenotype, management and outcomes.

- Valve replacement was surgical in 63% and via transcatheter in 13%.
- Median follow-up in survivors was 33 (16;65) months.
- Mortality was of 44% (n=7).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Combination of AS and TTR-CA may occur in elderly patients particularly those with a low-flow low-gradient AS pattern and carries bad prognosis. Diagnosis of TTR-CA in


AS is relevant to discuss specific treatment and management



6 ème éclition

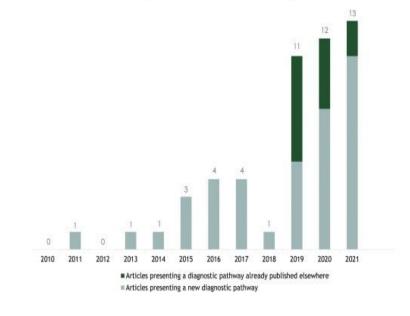
Proposed timeline of appropriate diagnostic tests based on typical disease process

6 ème éclition

Role of cardiac imaging

- Echocardiography, CMR and radionuclide tracer imaging (Single Photon Emission Tomography, SPECT, and Positron Emission Tomography, PET)
- 1) Diagnose cardiac amyloidosis
- 2) Prognosis
- 3)Confirm cardiac involvement in patients with known systemic amyloidosis
- 4) Monitor response to systemic therapy

6 ème éclition



Suspicion, screening, and diagnosis of wild-type transthyretin amyloid cardiomyopathy: a systematic literature review

Katrine Bay^{1,2}, Finn Gustafsson³, Michael Maiborg⁴, Anne Bagger-Bahnsen², Anne Mette Strand², Trine Pilgaard² and Steen Hvitfeldt Poulsen^{5*}

ECHO findings	
Ventricular wall thickening	44
Apical sparing global longitudinal strain pattern	36
Small pericardial effusion	28
Reduced global longitudinal strain	28
Biatrial enlargement/dilatation	27
Granular sparkling appearance of myocardium	25
Aortic stenosis	23
CMR findings	
Late gadolinium enhancement	43
Increased extracellular volume	36
Elevated native T1 mapping sequences	33
Diffuse subendocardial or transmural late gadolinium enhancement	30

Figure 3 Number of articles published between 2010 and November 2020 presenting a diagnostic pathway for wild-type transthyretin amyloid cardiomyopathy. Please note that the numbers of articles add up to 51 because the article by Dorbala *et al.* is divided into two publications.^{47,48}

CAMERI 2 DECEMBRE 2022

Multimodality Imaging : Finding, Stenghts and Limitations

Imaging modality	Findings in cardiac amyloidosis	Strengths	Limitations
Echocardiography	LVH	Readily available	No differentiation between CA subtypes
	Small LV cavity	Cheap	Variable image quality
	Large atria	High temporal resolution	Early findings in CA non-specific
	RV/LV systolic dysfunction	Identify other causes of LVH (AS, HCM, etc.)	
	Abnormal LV diastolic function	No radiation	
	Abnormal strain	Patient ease	
	Pericardial/pleural effusion		
Magnetic resonance imaging (MRI)	Similar morphologic findings to echocardiography (Figure 2)	Reproducible	Expensive
	Late gadolinium enhancement in atria and ventricles	Direct tissue characterization	Limited availability
	Pericardial/pleural effusion	No radiation	Special expertise required
	Atria dysfunction	Identify other causes of LVH (HCM, infiltrating disease)	Multiple patient specific exclusions (implants, claustrophobia, etc.)
	Interatrial septum thickening	Higher spatial resolution and multi-dimensional strain	
	Abnormal strain		
Cardiac scintigraphy (PYP, DPD, and HDMP)	Increased radiotracer uptake	Cheap	Radiation
	Increased H/CL ratio	Widely available	Mostly qualitative
		Ease of interpretation	Genetic variant uptake variability
		Differentiate amyloid subtype	
PET imaging	Increased radiotracer uptake	Quantitative assessment	Radiation
		Differentiate amyloid subtype	Expensive

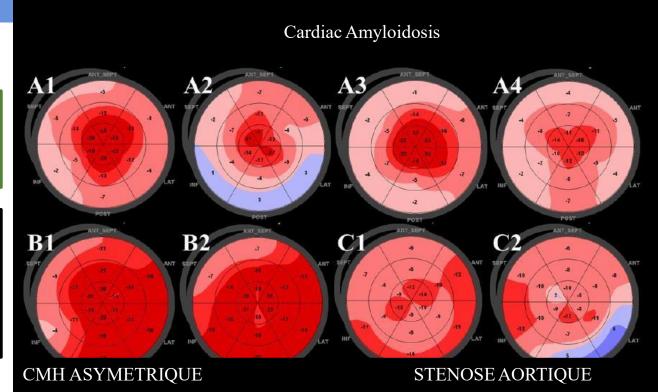
AS, aortic stenosis; H/CL, heart/contralateral; HCM, hypertrophic cardiomyopathy; LV, left ventricle; LVH, left ventricular hypertrophy; PET, positron-emission tomography.

EXPERT CONSENSUS RECOMMENDATIONS ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/ SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis Part 1 of 2—Evidence Base and Standardized Methods of Imaging

Parameter for Acquisition and Reporting	Abnormal Para	ameter	Notes		Recommendations for Reporting
2D, Color, and Spectral Doppler Imaging				Required	
LV wall thickness	Increased LV wall thickness (>1.2 cm) and increased relative wall thickness (>0.42)		Increased LV wall thickness relative to ECG QRS voltage is particularly suggestive		Required
Myocardial echogenicity	Increased echogenicity of the myocardium (sparkling, hyper-refractile "texture" of the myocardium)		Not highly specific (differential diagnosis includes ESRD or other infiltrative cardiomyopathies). How- ever, this finding in conjunction with severely reduced longitudinal function of the LV is highly suggestive.		Required
Atrial size and function	Atrial enlargement and dysfunction		Non-specific but important finding to support the diagnosis and potentially provide insight into risk for stroke or arterial embolism		Required
Interatrial septum and valves	Thickening of th valves (>0.5 cm	he interatrial septum and Non-specific but suggestive (of the diagnosis	Required
Pericardial effusion	Pericardial effus	sion Non-specific, but when coupled v is suggestive of the diagnosis			Required
Diastolic function	Grade 2 or wor high E/A ratio (eration time (<	An overall interpretation of the echo findings into categories of:		elpful in determining A wave velocity can be e helpful in determining	Required
Estimated PA systolic and right atrial pressure	Increased pres ≥10mmHg for	Not suggestive: Normal LV wall		rs to estimate volume osing.	Required
Tissue Doppler Imaging		thickness, <u>normal</u>	thickness, normal LV mass normal atrial		Required
Tissue Doppler velocities	Reduced tissue ties (all <5 cm/	size, septal or lateral tissue Doppler e' velocity >10 cm/s		TDI velocities <5 cm/s) highly suggestive of the sitive for the diagnosis in	Required
Strain Imaging		Strongly suggestiv	Strongly suggestive: Increased LV wall		Recommended
Longitudinal LV strain	Decreased glol solute value les			istic appearance of ients with cardiac amy-	Recommended
Longitudinal LV strain bulls- eye map	"Cherry-on-the- strain bullseye longitudinal stra basal and mid-l		pattern, mitral	n is likely the most gnosis of cardiac amy- erentiate ATTR vs. AL	Recommended

Ratio:

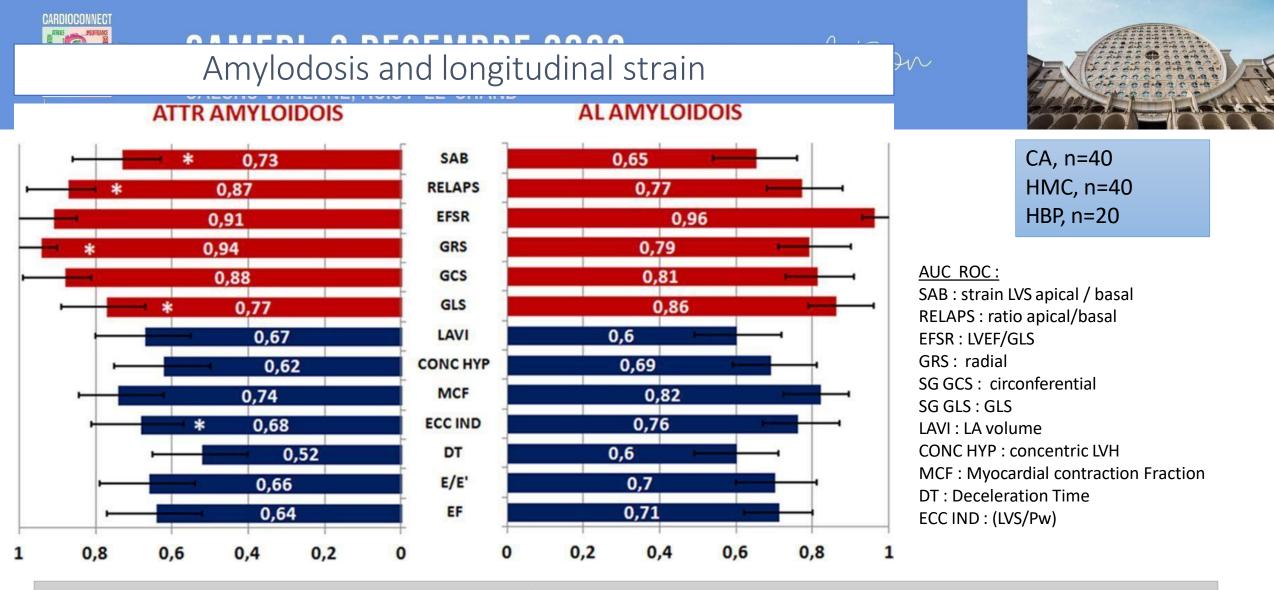
CAMERI O RECEMBRE 9099


Amylodosis and longitudinal strain

Variable CA HCM AS P LVH P **Echo Parameters: Ejection Fraction (%)** $63 \pm 5^*$ 48 ± 14 55 ± 13 0.003 47 ± 12 < 0.001 MWT (mm) 16.9 ± 2.8 15.8 ± 3.6 15.7 ± 1.7 0.21 15.8 ± 2.7 0.07 LMVI (g/m²) 149 ± 41 131 ± 46 160 ± 45 0.16 145 ± 47 0.70 LAVI (ml/m²) 39.3 ± 10.1 40.0 ± 14.2 45.5 ± 13.3 0.053 42.2 ± 13.9 0.32 E(m/s) 0.86 ± 0.26 0.86 ± 0.27 1.0 ± 0.26 0.94 ± 0.27 0.20 0.13 A(m/s) 0.49 ± 0.27 $0.94 \pm 0.29^*$ $0.70 \pm 0.24^*$ < 0.001 0.84 ± 0.29 < 0.001 E/A 2.20 ± 1.1 1.56 ± 0.8 < 0.001 1.22 ± 0.65 < 0.001 $0.95 \pm 0.3^*$ Average e' (m/s) 4.2 ± 1.7 $5.9 \pm 1.7^{*}$ $5.7 \pm 2.0^{*}$ < 0.001 5.8 ± 1.8 < 0.001 E/e' 17.8 ± 8.4 0.008 24.1 ± 12.7 $15.3 \pm 5.9^*$ 20.3 ± 9.9 0.02 DT m/s 206 ± 65 226 ± 66 0.003 183 ± 45 0.001 $244 \pm 64^*$ **Global LS** < 0.001 $-12.4 \pm 3.8^{*}$ -8.9 ± 3.7 $-17.5 \pm 3.4^*$ < 0.001 -14.9 ± 4.4

CA vs HCM vs AS

No difference between LVH/ LVEF


Diastolic Function + GLS more altered If CA

« APICAL Sparing » Longitudinal strain

Apical Strain Strain L basal + médian >1 = Cardiac Amyloidosis Se : 93% Sp: 82%.

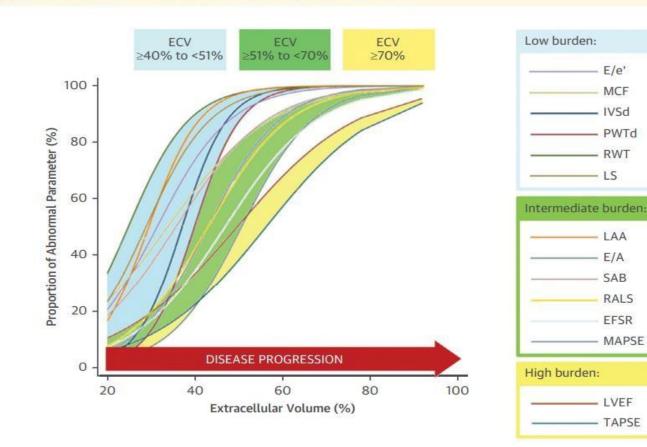
Phelan et al, Heart 2012

Ratio LVEF / GLS > 4.1 (Se 90%; Sp 92%) THE BEST ECHOCARDIOGRAPHIC INDEX ?

Pagourelias ED, Circ Cardiovasc Imaging, 2017

6 ème éclition

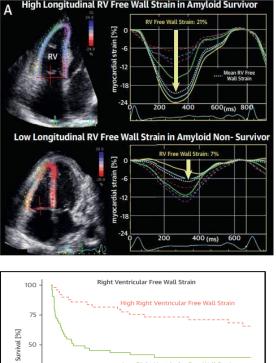
Echocardiography : Multi-Parametric Scores


- Aimo and colleagues developed a simpler echocardiographic score to maximize specificity of the diagnosis.
- The Amyloidosis Index (AMYLI) score equals RWT × E/e'
- □limitation: exclusion of patients in atrial fibrillation during echocardiogram.
- A cutoff >2.36 in patients with systemic AL amyloidosis and <2.22 in unexplained LVH excluded CA

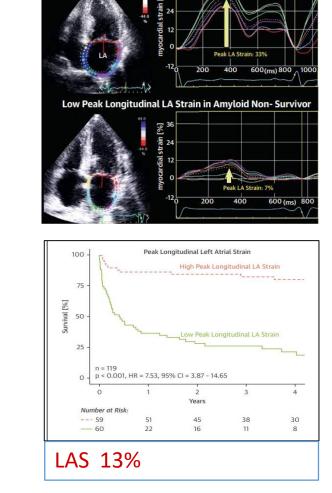
CARDIOCONNECT

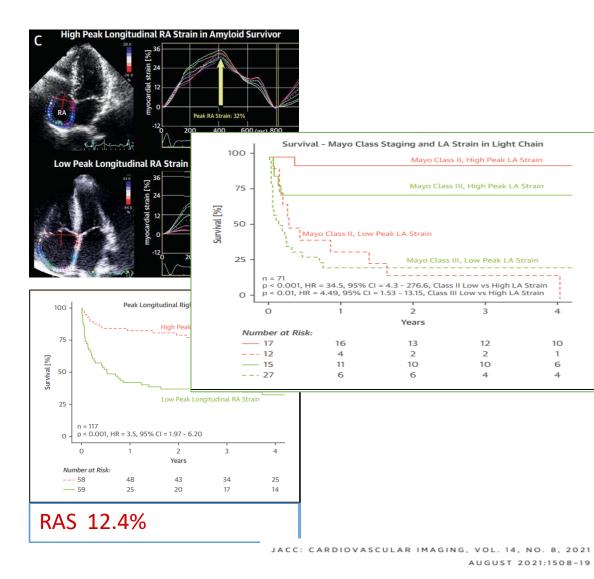
Multiparametric Echocardiography Scores for the Diagnosis of Cardiac Amyloidosis

- The probability of cardiac structural and functional variables being abnormal across the spectrum of cardiac amyloid burden (as defined by ECV).
- Variables can be categorized into 3 groups according to their likelihood of being abnormal: either predominantly at low, intermediate, or high burden of amyloid infiltration.



Prognostic Utility of Echocardiographic Atrial and Ventricular Strain Imaging in Patients With Cardiac Amyloidosis




Peter R. Huntjens, PHD,^a Kathleen W. Zhang, MD,^a Yuko Soyama, MD, PHD,^a Maria Karmpalioti, MD,^a Daniel J. Lenihan, MD,^a John Gorcsan III, MD^b

High Peak Longitudinal LA Strain in Amyloid Survivor

SAMEDY, 2 DECEMBRE 2023 prograntication et

CVI	UI	0		NOIOV		
JAL	UI	J	Index		CA	noccibil

Index	CA possibility	Sensitivity	Sensitivity	Reference
Possible diagnosis of CA				2)
Apical sparing	Possible CA	93%	82%	[40]
LVEF/GLS>4.95	Possible CA	75%	66%	[44]
GLS≤16.10%	Possible CA	92.9%	93.7%	[45]
GAS≤32.95%	Possible CA	81%	53.1%	
GLS≤16.09%	Possible CA in AL	94.23%	87.5%	[46]
GAS≤36.54%	Possible CA in AL	86.54%	80%	
GRS≤31.90%	Possible CA in AL	80.8%	47.5	
GAS < 19.4%	Possible CA	67.70%	75%	[47]
RV apical ratios > 0.8	Differentiating AL-CA and ATTR-CA	97.80%	90%	[51]
GWE < 86.5%	Differentiating AL-CA and ATTR-CA	80%	66.7%	[57]
Poor prognosis of CA				
GAS < -19%	HR = 1.23	-	-	[47]
Basal longitudinal strain≤13.07%	HR = 0.812 (0.675–0.976)	-	-	[48]
LVMWI < 1039 mmHg%	HR = 6.4 (2.4 - 17.1)	-	—	[58]
LVMWE < 89%	AUC = 0.689 (0.597-0.771)	65%	48%	[60]
MCF < 25%	HR = 5.369 (2.4–1.817–15.86)	-	-	[62]

AL-CA light-chain cardiac amyloidosis, ATTR-CA transthyretin-related cardiac amyloidosis, CA cardiac amyloidosis, GLS global longitudinal strain, GAS global area strain, GRS global radical strain, GWE global work efficiency, LVEF left ventricular ejection fraction, LVMWI left ventricular myocardial work index, LVMWE left ventricular myocardial work efficiency, MCF myocardial contraction fraction

CMR & cardiomyopathy

ΝΟΙΟΥ-ΓΕ-ΩΚΑΙΝΟ

ESC Cardiomyopathy Guidelines 2023

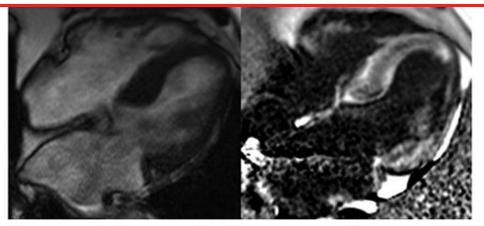
Recommendation Table 5 — Recommendations for cardiac magnetic resonance indication in patients with cardiomyopathy

Recommendations	Class ^a	Level ^b
Contrast-enhanced CMR is recommended in patients with cardiomyopathy at initial evaluation. ^{10,90,116,119–143}	I	В

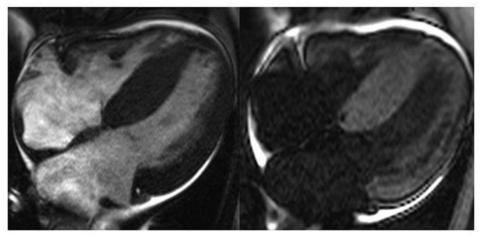
Transmural LGE - Amyloidosis

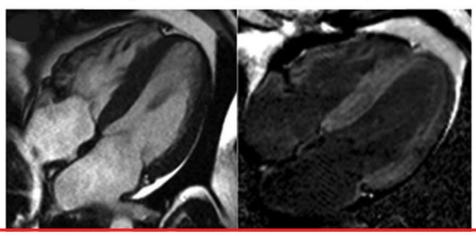
Global Subendocardial LGE - Amyloidosis - Systemic Sclerosis - Post Heart Transplantation

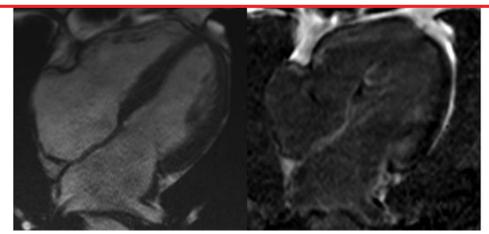
Cardiomyopathy phenotype	Finding	Cardiac CMR examples	Specific diseases to be considered
	Posterolateral LGE and concentric LVH Low native TI		Anderson–Fabry disease
HCM	Diffuse subendocardial LGE, high native TI		Amyloidosis
	Patchy mid-wall in hypertrophied areas		Sarcomeric HCM


Always specify for LGE + T1/T2 + ECV !

CMR: morphological analysis


Cine-CMR: morphological analysis > patterns of left ventricule hypertrophy


Asymmetric hypertrophy. Sigmoid septal contour (55%)

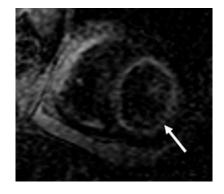

Asymmetric hypertrophy. Reverse septal contour (24%)

Symmetric hypertrophy (18%)

No LVH (3%)

Ana Martinez Naharro, JACC, 2017

CMR: late gadolinium enhancement

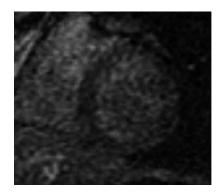

Diffuse enhancement 49 %

Transmural & homogenous

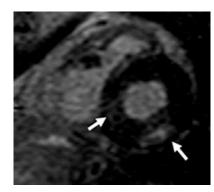
Transmural & heterogeneous

0

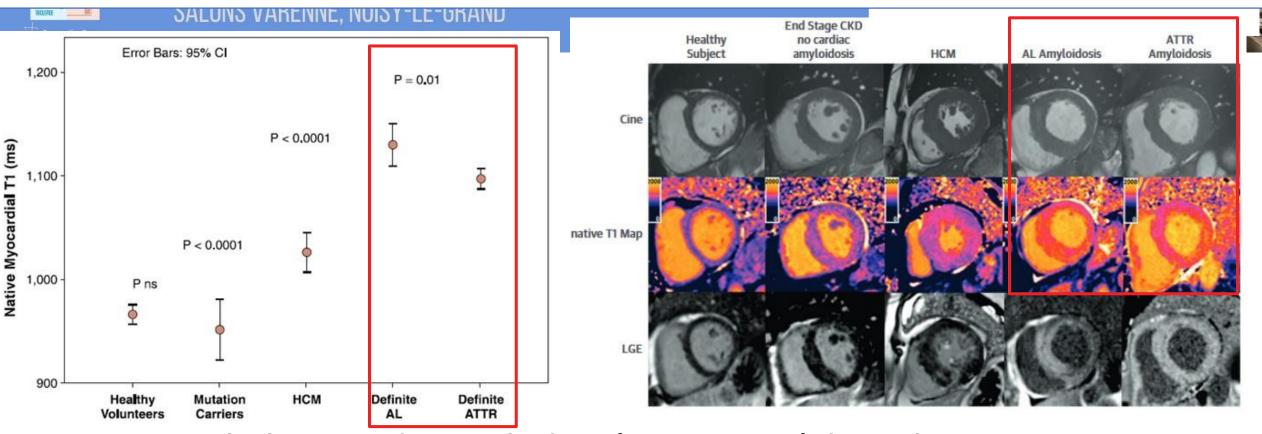
Subepicardial



None 21%



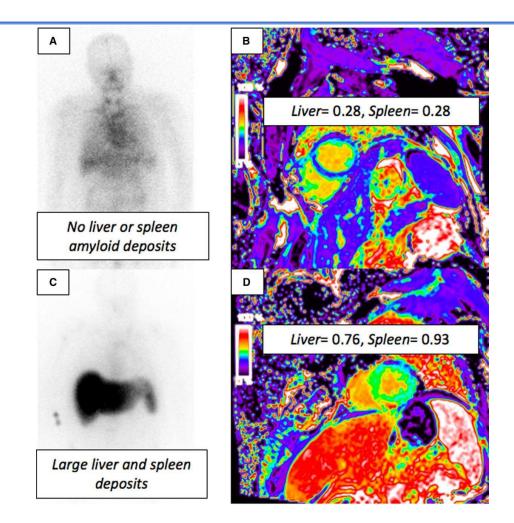
Syred IS, JACC CV Imaging, 2010


Suboptimal myocardial nulling (16%)

Patchy focal 14% (posterior/basal+++)

CMR: Native T1 mapping (before gadolinium)

- Native T1 is higher in cardiac amyloidosis (AL > ATTR-CA) then others HCM
- Example cut-off values to diagnose CA:
 - 1,048 ms (Se 80%-Sp 83%)
 - < 1,036 (98% NPV) ; > 1,164 (98% PPV)


<u>Limits:</u> T1 depends of vendor, type of gadolinium, HR, magnetic field, eGFR ... <u>Advantage:</u> no gadolinium!

Fontana M et al, JACC Imaging, 2014

Baggiano A, JACC Imaging, 2020

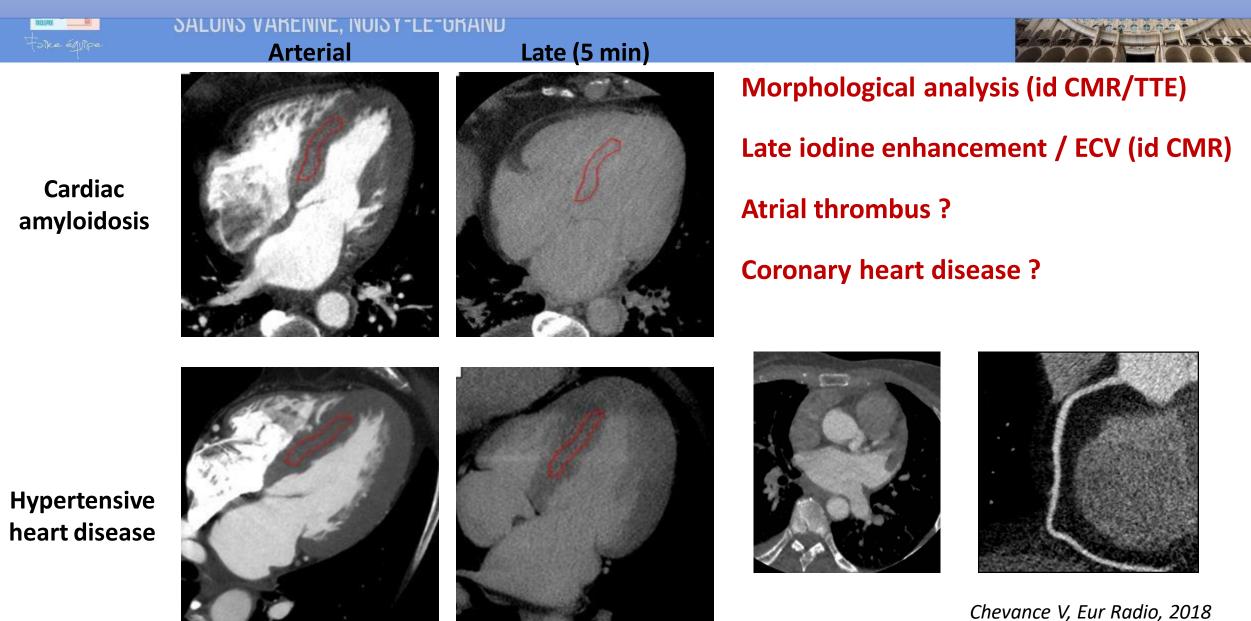
CARDIOCONNECT

Extracardiac amyloidosis and MRI

- Spleen & Liver ECV mapping is possible on CMR
- ECV can detects splenic & hepatic amyloidosis.

Liver ECV cutoff, 0.395; Se 90.7%; Sp, 77.7%; *P*<0.001; Spleen ECV cutoff, 0.385; Se, 93.6%; Sp, 87.5%; *P*<0.001).

Chacko L, Circulation CV Imaging, 2021



6 ène éclition

Computed tomography scan

CT scan

6 ème éclition

Nuclear imaging

6 ème éclition

Recommendations	Class ^a	Level ^b
DPD/PYP/HMDP bone-tracer scintigraphy is recommended in patients with suspected ATTR-related cardiac amyloidosis to aid diagnosis. ^{166–168}	I	в

Bone scintigraphy

Late phase of DPD/HMDP scan for diagnosis

	Group A TTR-Related CA (15 Patients)	Group B AL CA (10 Patients)	Unaffected Control Patients (10 Patients)	p Value (Kruskal-Wallis Test/ Contigency Tables)
Heart tracer retention (%)				
Median	7.3*†	3.8‡	2.9	0.0001
Interquartile range	6.7-8.4	3.4-4.05	2.7-3.5	
Whole-body tracer retention (%)				
Median	70.1†	67.6‡	56	0.010
Interquartile range	63.6-77.3	61.8-71.3	52-60	
Heart/whole-body ratio				
Median	10.0*†	5.4	5.4	0.0001
Interguartile range	8.9-11.2	5.2-5.5	5.0-5.7	
Visual cardiac score				
0	0 (0%)	10 (100%)	10 (100%)	0.0001
1	0 (0%)	0 (0%)	0 (0%)	
2	3 (20%)	0 (0%)	0 (0%)	
3	12 (80%)	0 (0%)	0 (0%)	

 $p^{*} = 0.05$ group A vs. B. $p^{+} = 0.05$ group A vs. control group. $p^{+} = 0.05$ group B vs. control group. CA = cardiac amyloidosis; TTR = transthyretin.

DPD scan seemed to discriminate TTR-CA from AL-CA with perfect accuracy ... ?

Late phase of DPD/HMDP scan for diagnosis

Amyloid type (n)	Cardiac ^{99m} Tc-DPD uptake				HMDP	AL (N = 26)	TTR (N = 39)	LVH (N = 20)
	Grade of	myocardial	uptake n (%)	Perugini score		Partupolitik 📭 St. 20548455	
	0	1	2	3	Score 0	24 (92%)	0	20 (100%)
					Score 1	2 (8%)	3 (7%)	0
$ATTR_{wt} n = 94$	1 (1)	5 (5.5)	81 (86)	7 (7.5)	Score 2	0	16 (41%)	0
ATTR-Val122lle $n = 38$	0	0	23 (61)	15 (39)	Score 3	0	20(52%)	0
$ATTR_{mt}$ (total) $n = 46$	6 (13)	7 (15)	26 (57)	7 (15)				
Val30Met <i>n</i> = 12	6 (50)	1 (8)	5 (42)	0	HMDP			
AL n = 44	26 (59)	17 (39)	1 (2)	0	All with CA	AL	m-TTR	wt-TTR
AA n = 3	2 (67)	1 (33)	0	0	N			
ApoA1 $n = 5$	1 (20)	4 (80)	0	0	Visual cardiac score	14	26	21
AFib $n = 2$	2 (100)	0	0	0	Score 0. n (%)	13 (93)	2 (8)	0 (0)
ALys $n = 1$	1	0	0	0	Score 1, <i>n</i> (%)	1 (7)	5 (19)	1 (5)
Unknown $n = 2$	1 (50)	1 (50)	0	0	Score 2, <i>n</i> (%) Score 3, <i>n</i> (%)	0 (0) 0 (0)	14 (54) 5 (19)	16 (76) 4 (19)
	(30)	1 (50)	U	v	5000 5, 11 (10)	0 (0)	5 (17)	7 (12)

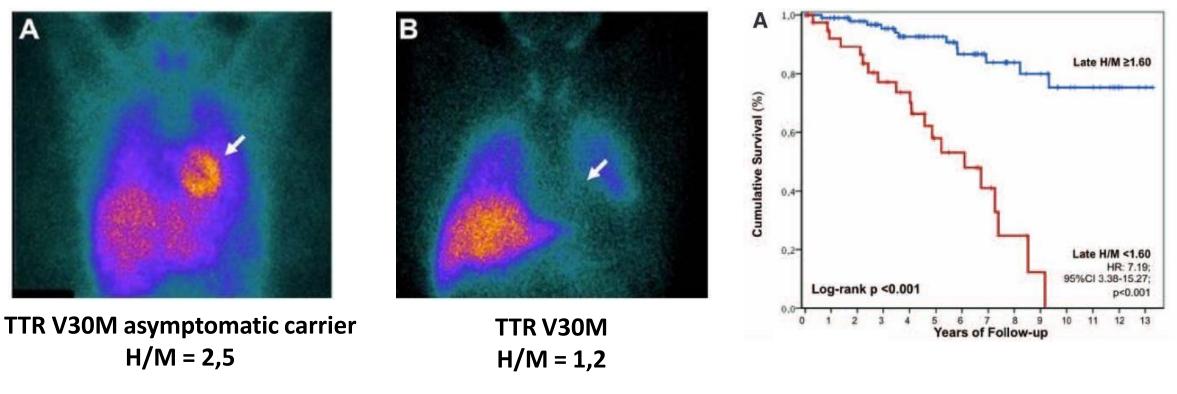
- Diffuse heart uptake = cardiac amyloidosis.
- Mild uptake (Score 1) = AL / ATTR-CA ? AL > 7-41% of AL CA have a positive scan.
- Moderate to strong uptake (Score 2/3) = ATTR-CA >> AL (if no clone).

Galat A, Amyloid, 2015 Hutt DF, EHJ CV imaging, 2014 Capelli F, JNC, 2017

Nonbiopsy diagnosis of TTR-CA

Table 5. Combined Radionuclide 'Bone' Scintigraphy and Monoclonal Protein Studies Compared With Amyloid Histology

Grade 2 or 3 Radionuclide Scan+Absence of Clone vs ATTR Amyloid Deposits on Histology From Any Organ (n=1217)								
Grade 2/3 Scan+No Clone, n Grade 0/1 Scan or Clone, n Sensitivity and Specificity (Cl), % PPV and NPV (Cl), %								
Cardiac ATTR amyloid	391	139	74 (70–77) sensitive*	NPV, 83 (80-86)				
No cardiac ATTR amyloid	0	687	100 (99–100) specific	PPV, 100 (99–100)				


Visual score ≥2 DPD/HMDP scan & no clone = ATTR cardiac amyloidosis (PPV 100% ; Se 74%)

Histology is not mandatory anymore to diagnose ATTR-CA

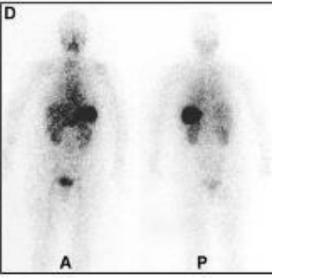
<u>MIBG</u>

- Cardiac sympathetic denervation is a useful prognostic marker in hTTR V30M
- Could be abnormal in early stage of CA in TTR mutated carriers

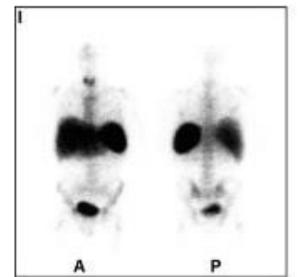
Piekarski, EJNMMI, 2018

Coutinho MC, Circ Cardiovasc Imaging, 2013

Others radiotracers



SALUNS VAREINNE, INUISY-LE-URAIND

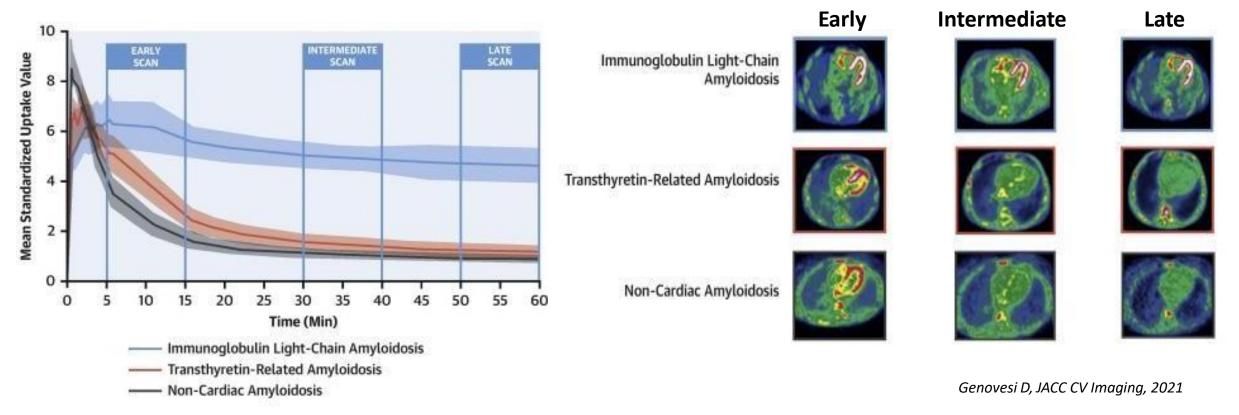


<u>123I-labeled serum amyloid P component (SAP)</u>

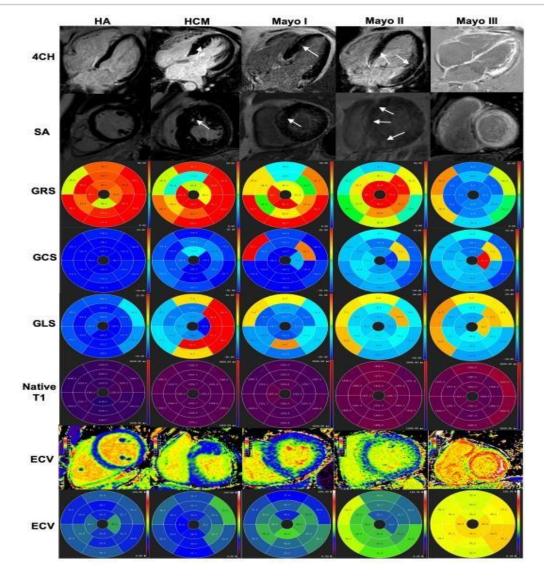
- Show extra-cardiac involvement of amyloidosis.
- Sensitive to diagnose AA and AL amyloidosis. Less sensitive for TTR.

Spleen and kidney uptake (AA)

Spleen, liver, and bone marrow (AL)

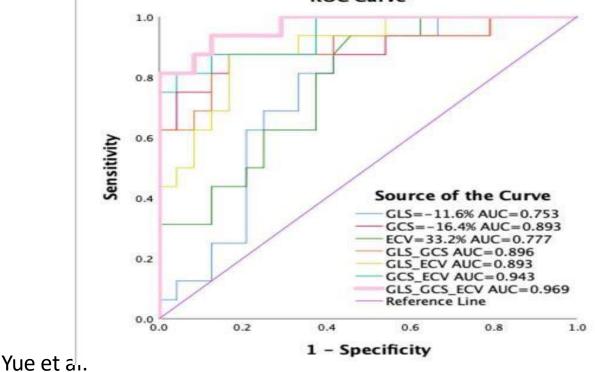

Dorbala, S, Eur J Nucl Med Mol Imaging, 2014

Thioflavin-T and Stilbene Derivatives



SALUNS VAREINNE, INUISY-LE-URAIND

- PET tracer developed for Alzheimer's disease. Bind to b-pleated motif of amyloid fibrils (AL and ATTR-CA).
- Tracers : C–Pittsburgh compound-B ; 18F–florbetaben ; 18F–florbetapir .
- 18F-florbetaben Scan : delayed cardiac uptake may discriminate AL-CA vs TTR-CA



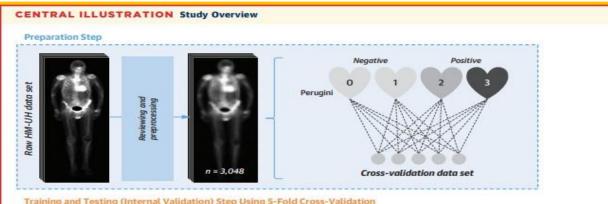
The diagnostic value of multiparameter cardiovascular magnetic resonance for early detection of light-chain amyloidosis from hypertrophic cardiomyopathy patients

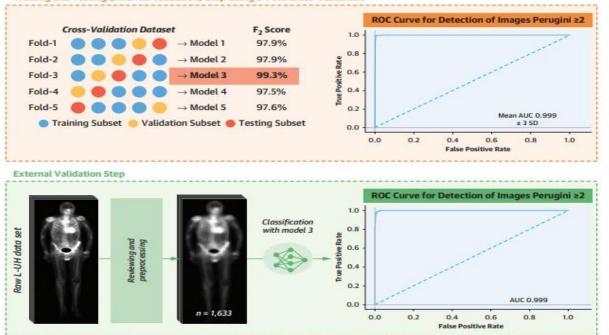
Xiuzheng Yue^{1†}, Lili Yang^{2†}, Rui Wang², Queenie Chan³, Yanbing Yang², Xiaohong Wu², Xiaowei Ruan², Zhen Zhang², Yuping Wei⁴ and Fang Wang^{2*†}

ROC Curve

6 ème éclition

Deep Learning on Bone Scintigraphy to Detect Abnormal Cardiac Uptake at Risk of Cardiac Amyloidosis

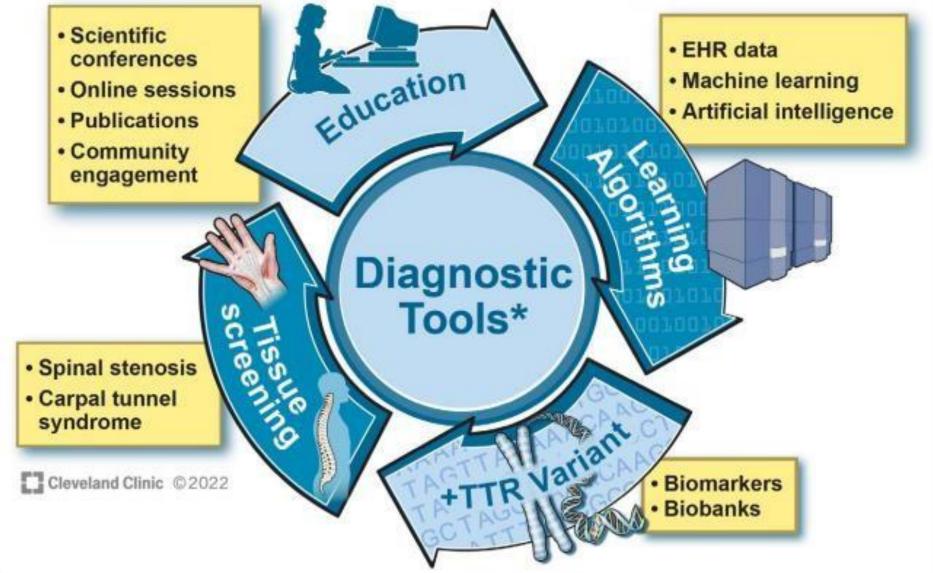

Marc-Antoine Delbarre, MD, MSc,^{a,b} François Girardon, MSc,^c Lucien Roquette, MSc,^c


-The training data set consisted of 3,048 images: 281 positives (Perugini grade \$2) and 2,767 negatives.

-External validation data set consisted of 1,633 images: 102 p and 1,531 n.

-Performance of the 5-fold cross-validation and external validation : 98.9% (1.0) and 96.1% for sen, 99.5% (0.4) and 99.5% for spe.

- AUC= 0.999 of the receiver-operating characteristic curves.



Delbarre M-A, et al. J Am Coll Cardiol Img. 2023;16(8):1085-1095.

6 ème éclition

